WORKING SCIENTIFICALLY

Developing children's skills in Comparative Tests

Enquiries that are comparative tests have many similar features to fair tests in that one variable is changed, another variable is measured, and any other variables are controlled. The difference is that in a comparative test the variable that is changed is discrete rather than continuous, so children are comparing different cases/situations.

Children regularly ask questions that lead to a comparative test, and these types of enquiries provide lots of opportunities to measure and collect data.

Big questions

Here are some examples of 'big questions' that pupils can explore through comparative tests in KS1 and KS2. There is at least one for every area of the curriculum, so it is easy to plan opportunities for children to revisit this type of enquiry and develop their skills.

Yearı	Year 2	Year 3	Year 4	Year 5	Year 6
Which type of	Do cress seeds	Which conditions	How does the	Which seed shape	Which is the
compost grows	grow quicker	help seeds	average	takes the longest	most common
the tallest	inside or outside?	germinate faster?	temperature of	time to fall?	invertebrate on
sunflower?			the pond water		our school
			change in each		playing field?
			season?		
Which tree has the	Do amphibians	How does the	In our class, are	Who grows the	Which type of
biggest leaves?	have more in	skull	omnivores taller	fastest, girls or	exercise has the
	common with	circumference of a	than vegetarians?	boys?	greatest effect
	reptiles or fish?	girl compare with			on our heart
		that of a boy?			rate?
Is our sense of	Do bananas make	Which soil absorbs	Does seawater	Which type of	What is the most
smell better when	us run faster?	the most water?	evaporate quicker	sugar dissolves	common eye
we can't see?			than fresh water?	the fastest?	colour in our
					class?
In which season	Is there the same	Which pair of	Which material is	How does the	Which material is
does it rain the	level of light in the	sunglasses will be	best to use for	length of daylight	most reflective?
most?	evergreen wood	best at protecting	muffling sound in	hours change in	
	compared with	our eyes?	ear defenders?	each season?	
	the deciduous				
	wood?				
Which materials	Which shapes	Which magnet is	Are two ears	Which shoe is the	Which make of
are the most	make the	strongest?	better than one?	most slippery?	battery lasts the
flexible?	strongest paper				longest?
	bridge?				
Which materials	Which material	Which surface is	Which metal is the	Which shape	Which type of
are the most	would be best for	best to stop you	best conductor of	parachute takes	fruit makes the
absorbent?	the roof of the	slipping?	electricity?	the longest to fall?	best fruity
	little pig's house?				battery?

Working Scientifically Skills

Comparative tests tend to involve some sort of data collection; KS1 children may use tally charts to record their observations but, as children move through KS2 they should be using an increasingly wide range of equipment to make measurements. They should learn what it means to measure accurately and check for reliability.

Children will learn to independently plan how to record and analyse the data, using tables, pictograms, and bar charts to compare the measurements they make. Children can then use the bar charts to draw conclusions about what they have found out to be the answer to their 'big question'

To promote higher order thinking, children should be challenged to evaluate the procedure they used and the quality of their data, suggesting ways they could improve their test.

Reporting Learning

Comparative tests are a good opportunity for children to focus on writing different aspects of a lab report in a more formal reporting style, organising their writing with subtitles, and, as they move into upper KS₂, learning to use the passive voice in their writing. On occasion, children can practice describing the method they planned to collect their data; it is important to note that it is not essential to write a full report but, rather, focus on a key area of reporting in which you would like children to develop their skills. An excellent way to test how well children have described their method is to group them in pairs and ask them to directly follow their partner's written instructions (with no other information). The observing partner will be able to note which important steps and details they have missed in their reporting, and therefore improve their instructions. In KS1 books you would generally expect to see a tally chart, pictogram, or block chart when reporting a comparative test, but older children in KS2 should be learning to independently draw a bar chart. The aim should be that by the time those children are in Year 6, they will be able to use their table of data to plan the best scale for the axes on their chart, and select sensible labels for the axes and a meaningful title for their bar chart with no support. Children should then use their data to support them in writing a conclusion and evaluation to complete their lab report.

Additional Information

A great example of a comparative test from history that you can share with your pupils is James Lind's controlled experiment aboard two ships (the first ever clinical trial). He gathered two identical populations and provided one with citrus fruit and not the other. This led to the scientific understanding on how to prevent scurvy.

Developing children's skills in Fair Tests

Like comparative tests, fair test enquiries are an opportunity for children to explore cause and effect relationships in science. Children find the answers to 'big questions' in fair test enquiries by planning tests to collect data through changing, measuring and controlling variables. Fair tests involve making systematic changes and analysing data to identify how one variable influences another. Due to the increased challenge in this type of enquiry they are introduced in KS2.

Big questions

Here are some examples of 'big questions' that pupils can explore through fair tests in KS2. There is almost one for every area of the curriculum so it is easy to plan opportunities for children to revisit this type of enquiry regularly and develop their skills.

Year 3	Year 4	Year 5	Year 6
How does the length of the	Does the amount of light	How does the level of salt	How does the temperature
carnation stem affect how	affect how many woodlice	affect how quickly brine	affect how much gas is
long it takes for the food	move around?	shrimp hatch?	produced by yeast?
colouring to dye the petals?			
How does the angle that	How does the mass of a	How does age affect a	How does the length of time
your elbow/knee is bent	block of ice affect how long	human's reaction time?	we exercise for affect our
affect the circumference of	it takes to melt?		heart rate?
your upper arm/thigh?			
How does adding different	How does the surface area of	How does the temperature	Can exercising regularly
amounts of sand to soil	a container of water affect	of tea affect how long it	affect your lung capacity?
affect how quickly water	how long it takes to	takes for a sugar cube to	
drains through it?	evaporate?	dissolve?	
How does the number of	How does the volume of a	How does the angle of	How does the angle that a
layers of transparent plastic	drum change as you move	launch affect how far a paper	light ray hits a plane mirror
affect how much light can	further away from it?	rocket will go?	affect the angle at which it
pass through?			reflects off the surface?
How does the mass of an	How does the thickness of a	How does the surface area of	How does the voltage of the
object affect how much	conducting material affect	a container affect the time it	batteries in a circuit affect
force is needed to make it	how bright the lamp is?	takes to sink?	the brightness of the lamp?
move?			
How does the distance	How does the length of a	How does the surface area of	How does the voltage of the
between the shadow puppet	guitar string/tuning fork	a parachute affect the time it	batteries in a circuit affect
and the screen affect the	affect the pitch of the	takes to fall to the ground?	the volume of the buzzer?
size of the shadow?	sound?		

Working scientifically skills

As with other types of enquiry, fair tests are a great opportunity for children to plan their own tests to collect data. It is through fair testing that children will really learn to understand the different types of variables:

• the dependent variable that they will change in their test,

• the independent variable that they are going to measure so that they can find out how the dependent variable affects it, and

• the control variables which the children will need to keep the same so that they don't affect their results.

All fair tests involve the measuring and recording of data that can then be displayed in a scatter graph or line graph. Children will be able to use their data to draw conclusions that identify a causal relationship eg 'when you increase X, Y will always decrease'.

As children progress through KS2, they should become progressively more systematic in how they approach fair tests and, as with the other types of enquiry, increasingly independent. Their written conclusions should also become increasingly sophisticated, with more focus on scientific explanations. Fair tests are a good opportunity for children to focus on their skills in evaluating their scientific enquiries. As they progress through the key stages, children will learn to critique not just their experimental methods but also their data by reflecting on reliability and accuracy.

Reporting learning

It really isn't necessary for children to write a full laboratory report for every enquiry they carry out; in fact, it is far better to focus on a particular aspect of reporting for each enquiry so that children can focus on developing skills in that area. Fair test enquiries provide opportunities for children to work on all aspects of reporting, from creating written instructions to describe their plan, to tabulating data, graph-drawing, or writing conclusions and evaluating.

Children should be learning to independently plan and draw their own tables for recording data over KS2, making sure that all columns have headings with units and, where repeat measurements are collected, children will learn to calculate the mean average of a set of data. The most common mistakes that children make when creating tables for their data are:

not planning for sufficient rows and columns, and

• forgetting to include the units of measurement in the column heading.

The expectation that children should always collect repeat readings and calculate an average when carrying out fair tests in upper KS2 leads to children developing a strong level of confidence in using statistical methods to analyse data sets.

In upper KS2, children will learn how to plot their own scatter and line graphs, plan scales for axes, plot points accurately, and include axis labels and titles. Peer and self-assessment strategies will help children be clear on the success criteria for data analysis strategies and fine-tune their skills. Children will need repeated practice to plan even scales with appropriate ranges for their data sets.

Reporting learning

It really isn't necessary for children to write a full laboratory report for every enquiry they carry out; in fact, it is far better to focus on a particular aspect of reporting for each enquiry so that children can focus on developing skills in that area. Fair test enquiries provide opportunities for children to work on all aspects of reporting, from creating written instructions to describe their plan, to tabulating data, graph-drawing, or writing conclusions and evaluating.

Children should be learning to independently plan and draw their own tables for recording data over KS₂, making sure that all columns have headings with units and, where repeat measurements are collected, children will learn to calculate the mean average of a set of data. The most common mistakes that children make when creating tables for their data are:

• not planning for sufficient rows and columns, and

• forgetting to include the units of measurement in the column heading.

The expectation that children should always collect repeat readings and calculate an average when carrying out fair tests in upper KS2 leads to children developing a strong level of confidence in using statistical methods to analyse data sets. In upper KS2, children will learn how to plot their own scatter and line graphs, plan scales for axes, plot points accurately, and include axis labels and titles. Peer and self-assessment strategies will help children be clear on the success criteria for data analysis strategies and fine-tune their skills. Children will need repeated practice to plan even scales with appropriate ranges for their data sets.

Additional information

There are many examples of significant fair tests that have taken place over the years, which can be interesting to explore when looking at how ideas change over time. When the children are learning about the properties of materials it would be quite interesting to learn about Hooke's Law, which was derived from a fair test involving stretching a spring with different forces. Children can repeat Hooke's experiment; and the data they collect can help them to test and create their own mass or force-measuring device.

Develop children's skills in Identifying and Classifying

Children begin identifying and classifying objects in the world around them from a very young age; this type of enquiry comes very naturally as young learners try to make sense of the world around them. In this type of enquiry, children make observations and measurements to help them look for similarities and differences. This will help them to organise things into groups and make connections. Identifying and classifying enquiries are fantastic for promoting discussion and collaborative learning. In revisiting this type of enquiry regularly, teachers can support children in becoming more highly skilled in making and recording detailed observations.

Big Questions

Here are some examples of 'big questions' that can be explored by identifying and classifying in KS1and KS2. There is at least one for every area of the curriculum, so it is easy to plan opportunities for children to revisit this type of enquiry and develop their skills.

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
How can we sort the leaves that we collected on our walk?	How can we identify the trees that we observed on our tree hunt?	How many different ways can you group our seed collection?	What are the names for all the organs involved in the digestive system?	Can you identify all the stages in the human life cycle?	How would you make a classification key for vertebrates/ invertebrates or microorganisms?
How can we organise all the zoo animals?	Which offspring belongs to which animal?	How do the skeletons of different animals compare?	How can we organise teeth into groups?	Compare this collection of animals based on similarities and differences in their lifecycle.	Which organs of the body make up the circulation system, and where are they found?
What are the names for all the parts of our bodies?	How would you group these plants and animals based on what habitat you would find them in?	Can you use the identification key to find out the name of each of the rocks in your collection?	Can you group these materials and objects into solids, liquids, and gases?	Can you group these materials based on whether they are transparent or not?	Compare the skeletons of apes, humans, and Neanderthals – how are they similar, and how are they different?
How would you group these things based on which season you are most likely to see them in?	How would you group things to show which are living, dead, or have never been alive?	How would you organise these light sources into natural and artificial sources?	Can we use the classification keys to identify all the animals that we caught pond dipping?	How could you organise all the objects in the solar system into groups?	Can you classify these observations into evidence for the idea of evolution, and evidence against?
We need to choose a material to make an umbrella. Which materials are waterproof?	Which materials are shiny and which are dull?	How can we group the food that we eat?	How would you group these electrical devices based on where the electricity comes from?	Can you label and name all the forces acting on the objects in each of these situations?	Can you identify all the colours of light that make white light when mixed together? What colours do you get if you mix different colours of light together?
Which materials will float and which will sink?	Which materials will let electricity go through them, and which will not?	Which materials are magnetic?	How would you sort these objects/materials based on their temperature?	Can you observe and identify all the phases in the cycle of the Moon?	How would you group electrical components and appliances based on what electricity makes them do?

Working scientifically skills

In KS1, children will be asking questions about the similarities and differences between things, which is a great opportunity to promote 'talk for learning' and encourage children to share their ideas. This type of enquiry lends itself to going outside to explore the world around them at all times of the year.

Going into KS2, this type of enquiry is often moved to the side with an increased focus on measuring and using data to answer 'big questions'. However, it does need to be regularly revisited. Children should continue to build on their observational skills, becoming more independent in identifying, through the use of increasingly complex tools, as well as developing higher order skills in reasoning and justification when explaining how they have chosen to group things. KS2 pupils will be expected to design simple tests to help them classify materials, as well as independently using a range of secondary sources to support them in identifying a range of living things.

Reporting Learning

In KS1, children will be asking questions about the similarities and differences between things, which is a great opportunity to promote 'talk for learning' and encourage children to share their ideas. This type of enquiry lends itself to going outside to explore the world around them at all times of the year. Going into KS2, this type of enquiry is often moved to the side with an increased focus on measuring and using data to answer 'big questions'. However, it does need to be regularly revisited. Children should continue to build on their observational skills, becoming more independent in identifying, through the use of increasingly complex tools, as well as developing higher order skills in reasoning and justification when explaining how they have chosen to group things. KS2 pupils will be expected to design simple tests to help them classify materials, as well as independently using a range of secondary sources to support them in identifying a range of living things.

Develop children's skills in Pattern Seeking

Pattern-seeking enquiries involve children making measurements or observations to explore situations where there are variables that they can't easily control. In this type of enquiry, children are trying to answer 'big questions' by identifying patterns in the measurements and observations they record. Often, pattern-seeking enquiries may be preliminary tests that lead on to more systematic enquiries, such as fair tests or comparative tests. The key difference here is that pattern-seeking enquiries are not fair or comparative tests, because certain variables can't be controlled. Children may still identify a possible causal relationship from their data, such as 'the more you wind up a clockwork mouse, the further it will run', but they may find links between variables that can't be explained by cause and effect, such as 'children with longer arms can jump higher'.

Big questions

Here are some examples of 'big questions' that can be explored through pattern seeking in KS1and KS2. There is at least one for every area of the curriculum, so it is easy to plan opportunities for children to revisit this type of enquiry and develop their skills.

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Do trees with	Do bigger seeds	What colour	How has the use	Is there a	Do all flowers
bigger leaves lose	grow into bigger	flowers do	of insecticides	relationship	have the same
their leaves first in	plants?	pollinating insects	affected bee	between a	number of petals?
autumn?		prefer?	population?	mammal's size	
				and its gestation	
				period?	
Is there a pattern	What conditions	Do male humans	Are foods that are	Are the oldest	Is there a pattern
in where we find	do woodlice	have larger skulls	high in energy	children in our	between what we
moss growing in	prefer to live in?	that female	always high in	school the tallest?	eat for breakfast
the school		humans?	sugar?		and how fast we
grounds?					can run?
Do you get better	Which age group	Is there a pattern	Is there a pattern	Do all stretchy	Is there a pattern
at smelling as you	of children wash	in where we find	in how long it	materials stretch	between the size
get older?	their hands the	volcanos on	takes different	in the same way?	and shape of a
	most in a day?	planet Earth?	sized ice lollies to		bird's beak and
			melt?		the food it will
					eat?
Does the wind	Which habitat do	Are you more	Is there a link	Is there a pattern	Is there a pattern
always blow the	worms prefer –	likely to have bad	between how loud	between the size	to how bright it is
same way?	where can we find	eye sight and to	it is in school and	of a planet and	in school over the
	the most worms?	wear glasses if	the time of day? If	the time it takes	day? And, if there
		you are older?	there is a pattern,	to travel around	is a pattern, is it
			is it the same in	the Sun?	the same in every
			every area of the		classroom?
			school?		
Is there a pattern	Do magnetic	Does the size and	Which room has	Do all objects fall	Does the
in the types of	materials always	shape of a magnet	the most electrical	through water in	temperature
materials that are	conduct	affect how strong	sockets in a	the same way?	of a light bulb go
used to make	electricity?	it is?	house?		up the longer it is
objects in a					on?
school?					

Working scientifically skills

In experiencing pattern-seeking enquiries, KS1 children will begin to look for patterns in their measurements and observations, and describe them both orally and in writing. They should also be starting to think about cause and effect relationships, and being encouraged to use appropriate vocabulary to discuss these.

For pattern-seeking enquiries, KS2 children should be thinking for themselves when it comes to deciding what they should measure and observe, as well as making decisions about the most appropriate equipment to use to collect data. Children in upper KS2 should be challenged to think even more about their planning, including identifying the variables that they cannot control and suggesting the potential impact those variables might have on the data they collect. Whenever appropriate, KS2 pupils should be choosing to use a data logger to collect the most accurate data they can. KS1 learners will need more support with making decisions about what to observe or measure, but should still be challenged to make their own suggestions.

Children in KS₂ should be using far more data analysis techniques to spot patterns, including using tabulated data and a variety of charts and graphs. When describing the relationships, children should use data and graphs to support their explanations. As

mentioned earlier, this type of enquiry works well as a preliminary test; so children can use their findings to form and justify their own predictions, going on to propose further investigations to test these predictions.

Reporting Learning

Pattern-seeking enquiries are a great opportunity for children to develop their measuring skills and look for different ways to record and analyse their data. In regularly practising this type of enquiry, children will go from making and recording simple data values in KS1 to more systematic and accurate measuring in KS2 that can then be analysed using more complex methods.

Year 1 and 2 children could be using tally charts to record, and then developing these into pictograms to look for patterns. As they progress into KS2, children will be making measurements of quantities, such as length (cm), temperature (°C), volume (dB), and time (s), learning how to display this data accurately in tables, and then using bar charts to analyse their findings.

By the time they get to upper KS₂, children will be looking more carefully at the accuracy of their measurements, including measuring lengths to the nearest mm, or temperatures to one decimal place. At this stage, children will be selecting the most accurate measuring equipment available and repeating measurements to check the reliability of their data. This will provide some great opportunities for children to regularly develop their skills in calculating the mean, average and range of a data set. Upper KS₂ learners will then go on to learn how to independently draw scatter graphs and line graphs of their data to help them describe the patterns they notice in a more quantitative way, again regularly practising mathematical skills.

The data analysis that happens here provides a great opportunity for children to develop their conclusion writing; however, it also forms an ideal platform from which children can work on the development of predictions and proposing further enquiries to test their ideas. In asking children to form predictions based on data from a pattern-seeking enquiry, the children can use the data they have collected to justify their ideas for how things might be in a different but related situation, or even to generalise about how things might always be. Such predictions can enable learners to go on to create their own 'big questions', and plan tests to see if their prediction is correct. Taking this approach not only allows for more pupil-centred enquiry, it also gives children a more realistic appreciation of how the scientific process works, and how one question always leads on to even more.

Additional information

There are many real examples of pattern-seeking enquiries that lead to fascinating discoveries about the world and universe around us that you might want to share with pupils.

There are many examples of patterns in nature that have been investigated and interpreted by a whole range of scientists. Symmetry, fractals, and spirals have been endlessly observed and modelled using mathematics. The Fibonacci Sequence is a fascinating mathematical model that describes patterns in nature that you can find more here <u>https://www.livescience.com/37470-fibonacci-sequence.html</u> and a wonderful book to use with classes when learning about the Fibonacci Sequence is *Blockhead: The life of Fibonacci* by Joseph D'Agnese.

Astronomers use pattern-seeking enquiries to discover more about our unknown universe, and it is this pattern-seeking that has led to the discovery of hundreds of new planets, orbiting different stars. The Planet Hunters citizen science project enables participants to look for patterns in the light from distant stars to help identify whether they may have planets orbiting them or not. <u>https://www.planethunters.org</u>

Develop children's skills in Research

Research enquiries are a great opportunity to use science lessons to practise reading and listening skills developed in English; children get to use a range of secondary sources to help them find the answers to their 'big questions'. Alternatively, children could plan research tools, such as questionnaires and interviews, to collect their own data. They are also an ideal type of enquiry to encourage collaborative learning in children, both in the researching and sharing of information, but also in presenting their findings to a variety of audiences. Research enquiries help to develop children's scientific literacy, as children learn to compare and evaluate information from different sources.

As children learn to recognise the differences between fact and opinion, and consider the concept of bias, they develop life skills that will support them in being citizens of the twenty-first century.

Big questions

Here are some examples of 'big questions' that can be explored through research in KS1and KS2.

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
What are the	How does a cactus	What are all the	Why are people	What are the	What do different
most common	survive in a desert	different ways	cutting down the	differences	types of
British plants and	with no water?	that seeds	rainforests and	between the life	microorganisms
where can we find		disperse?	what effect does	cycle of an insect	do? Are they
them?			that have?	and a mammal?	always harmful?
How are the	What do you need	Why do different	How do dentists	Why do people	How have our
animals in	to do to look after	types of vitamins	fix broken teeth?	get grey/white	ideas about
Australia different	a pet dog / cat /	keep us healthy		hair when they	disease and
to the ones that	lizard and keep it	and which foods		get older?	medicine changed
we find in Britain?	healthy?	can we find them			over time?
		in?			
Do all animals	What food do you	Who was Mary	What are	What are micro-	What happened
have the same	need in a healthy	Anning and what	hurricanes, and	plastics and why	when Charles
senses as	diet and why?	did she discover?	why do they	are they harming	Darwin visited the
humans?			happen?	the planet?	Galapagos
					islands?
Are there plants	How does the	How does the Sun	How has	How have our	Why do some
that are in flower	habitat of the	make light?	electricity	ideas about the	people need to
in every season?	Arctic compare		changed the way	solar system	wear glasses to
What are they?	with the habitat of		we live?	changed over	see clearly?
	the rainforest?			time?	
How are bricks	How have the	How have our	How does a light	What unusual	How has our
made?	materials we use	ideas about forces	bulb work?	objects did	understanding of
	changed over	changed over		Jocelyn Bell	electricity
	time?	time?		Burnell discover?	changed over
					time?
Which materials	How are plastics	How does a	Do all animals	How do	How do
can be recycled?	made?	compass work?	have the same	submarines sink if	astronomers
			hearing range?	they are full of air?	know what stars
					are made of?

Working scientifically skills

Using research to find the answers to 'big questions' allows children to practise and develop a range of skills. Reading for information and note-taking form an important part in this process but, as children become more skilled in carrying out independent research, they will learn to interpret the information they find and critically consider its relevance in answering their 'big questions'. Children will learn to use a range of secondary sources, including books, websites, and video, to find their information. Where possible, children can listen to presentations from experts and science professionals to get their information, or ask them questions in interviews and letters. As children move into KS2, they should be finding more data in their research and using this to help answer questions; it is even better if they start to collect their own data through questionnaires and interviews. At this stage, children should also be encouraged to evaluate the quality of the information they have found and how well it has enabled them to draw conclusions and answer their 'big question'.

Reporting Learning

This a fantastic type of enquiry for children to propose their own 'big question' to find out even more about the subject they are studying. It is much easier to manage a class full of children all following their own lines of enquiry with research than it is with any other type of enquiry. Research enquiries allow children to be creative in how they present their findings.

Depending on what they are researching, children can create posters, leaflets, newspapers, reports or letters to report their findings in writing. Alternatively, children can use multimedia to share their learning by creating videos, presentations or even podcasts. Research enquiries also support children in learning about how scientific ideas have changed over time, and this can lead to the creation of timelines in various forms. This type of enquiry is also ideal for learning about how real scientists work, both interesting characters from history, but also scientists working in your local community.